Skip to content

Valerio Di Stefano

Il sito web ufficiale di Valerio Di Stefano

Menu
  • Amazon
  • Canale WhatsAPP
  • In pubblicazione
Menu

The Potential of Artificial Intelligence in Healthcare: Transforming Patient Care and Administrative Efficiency

Posted on 8 Febbraio 2025 by valerio

Authors: Kumar Gaurav is a public health expert and Certified Digital Health Professional with over 15 years of experience, he has worked across various facets of public health, including program design, implementation, monitoring, and evaluation. His key focus areas include Reproductive, Maternal, Newborn, Child, and Adolescent Health (RMNCH+A), health system strengthening, health insurance, universal health coverage (UHC), non-communicable diseases, and digital health. Mansi is a public health researcher with nearly five years of experience, she holds a Master of Public Health (MPH) from the Indian Institute of Public Health, Gandhinagar. Throughout her career, she has worked across multiple states in India, contributing to projects in areas such as maternal, newborn, and child health (MNCH), non-communicable diseases (NCD), and implementation science. Her focus is on improving healthcare systems and outcomes, with a strong passion for driving meaningful change in diverse communities

Introduction

As an enthusiast in the rapidly evolving field of healthcare technology, I’ve been particularly fascinated by the potential of artificial intelligence (AI) to revolutionize various aspects of medical practice and administration. The increasing complexity and volume of healthcare data demand new, innovative solutions, and AI appears to be a promising answer. Technologies like machine learning and deep learning are transforming how we approach diagnosis, personalize treatments, and streamline administrative tasks. Lately, AI has been making notable progress in healthcare, showing real-world applications. By sifting through vast amounts of data, AI can uncover crucial patterns that facilitate early disease detection, more precise diagnoses, and customized treatment plans (Adigwe et al., 2024; Rathore & Rathore, 2023) .

Additionally, machine learning algorithms have the potential to streamline administrative processes and manage healthcare databases more efficiently (Del Giorgio Solfa & Simonato, 2023) Its impact is also evident in patient care, from advanced diagnostics in emergency medicine and telehealth to managing public health challenges like COVID-19 by facilitating early risk identification, personalized treatment approaches, and intricate disease pattern analysis (Islam et al., 2021). As AI continues to advance, its potential to revolutionize both patient care and healthcare administration is truly exciting, setting the stage for groundbreaking innovations in the field.

Introduction to AI in Healthcare

Artificial intelligence, encompassing a range of technologies, is becoming increasingly integrated into healthcare. These technologies have the potential to transform patient care, administrative processes, and pharmaceutical research. Current AI applications in healthcare include diagnosing diseases, treatment recommendations, patient engagement, and administrative tasks. AI and machine learning are transforming healthcare by improving the accuracy of diagnostics through medical imaging and predictive analytics, and personalizing treatments via genomics and drug development. They also enhance treatment efficiency through robotic surgery and AI-driven virtual health assistants. Addressing challenges like data privacy, bias, and regulatory approval is crucial for their broader implementation

Key AI Technologies in Healthcare

Machine Learning: One of the most prevalent forms of AI, machine learning, involves training algorithms on large datasets to make predictions or decisions. In healthcare, machine learning is often used for precision medicine, predicting which treatments will be most effective for individual patients based on their unique attributes. According to a 2018 Deloitte survey, 63% of companies pursuing AI were employing machine learning​(futurehealth-6-2-94)​.

Deep Learning: A subset of machine learning, deep learning, uses neural networks with many layers to analyze data. In healthcare, deep learning is particularly useful in radiology, where it can identify potential cancers in imaging data with high accuracy. This technology is also applied in natural language processing (NLP) for tasks like speech recognition and text analysis. Deep learning is increasingly used for recognizing cancerous lesions in radiology images, with radiomics detecting features beyond human perception​(futurehealth-6-2-94)​.

Natural Language Processing: NLP helps in understanding and generating human language. In healthcare, it’s used to analyze clinical notes, prepare reports, and transcribe patient interactions. This technology facilitates better data management and patient care documentation. For example, NLP systems can classify clinical documentation and published research, transcribe patient interactions, and even conduct conversational AI​(futurehealth-6-2-94)​.

Rule-Based Expert Systems: These systems use “if-then” rules to provide clinical decision support. While they have been widely used, they are gradually being replaced by more advanced machine learning approaches due to their limitations in handling large and dynamic sets of rules. Expert systems are still widely used today in electronic health record (EHR) systems but are being replaced by data-driven and machine learning-based approaches[1]​(futurehealth-6-2-94)​.

Robotic Process Automation (RPA): RPA mimics human actions to perform structured tasks, such as updating patient records or processing claims. It is cost-effective and enhances administrative efficiency, allowing healthcare professionals to focus more on patient care. RPA is used for tasks like prior authorization, billing, and updating patient records​(futurehealth-6-2-94)​.

Applications in Diagnosis and Treatment

AI’s role in diagnosis and treatment has evolved significantly. Early systems like MYCIN showed promise but lacked practical integration into clinical workflows. Today, AI systems like IBM’s Watson leverage machine learning and NLP to provide precision medicine, especially in oncology. Despite initial challenges, these systems are being refined to improve their integration and accuracy.

In the realm of diagnostics, AI algorithms now outperform radiologists in detecting malignant tumors, guiding researchers in constructing cohorts for clinical trials​(futurehealth-6-2-94)​. AI systems like Google’s TensorFlow are also making significant strides in diagnostic accuracy by utilizing machine learning models that predict patient outcomes based on extensive data analysis​(futurehealth-6-2-94)​.

Enhancing Patient Engagement and Adherence

Engaging patients in their care is crucial for better health outcomes. AI can personalize and contextualize care through machine learning and business rule engines, providing timely interventions based on real-world evidence. For instance, AI can send targeted alerts to remind patients to take their medications or follow up on appointments, thus improving adherence and health outcomes.

A survey of over 300 clinical leaders and healthcare executives revealed that more than 70% reported having less than 50% of their patients highly engaged, with 42% stating that less than 25% of their patients were highly engaged​(futurehealth-6-2-94)​. AI-based systems are being developed to address this engagement gap by tailoring recommendations and interventions based on patient data and treatment pathways.

Streamlining Administrative Tasks

AI can significantly reduce the administrative burden in healthcare. Technologies like RPA and machine learning streamline tasks such as claims processing, clinical documentation, and revenue cycle management. By automating these repetitive tasks, healthcare organizations can achieve substantial efficiencies and cost savings.

For instance, the average US nurse spends 25% of their work time on regulatory and administrative activities​(futurehealth-6-2-94)​. Implementing RPA can alleviate this burden, allowing nurses to devote more time to patient care. Additionally, machine learning can enhance claims processing by identifying and correcting coding issues, saving time and reducing errors​(futurehealth-6-2-94)​.

The Future of AI in Healthcare

While AI holds immense potential, its widespread adoption in healthcare faces several challenges. Integrating AI into existing workflows, ensuring data accuracy, and addressing ethical concerns are critical steps that need careful consideration. However, as AI technologies continue to advance and integrate, the healthcare sector is poised to see significant improvements in both patient care and operational efficiency.

In conclusion, the journey of AI in healthcare is just beginning, with promising applications already making a difference. As we continue to innovate and overcome challenges, AI will undoubtedly play a pivotal role in shaping the future of healthcare. The potential for AI to enhance diagnosis, treatment, patient engagement, and administrative efficiency is vast, and its continued development and integration will lead to a more effective and efficient healthcare system.

References

Adigwe, O. P., Onavbavba, G., & Sanyaolu, S. E. (2024). Exploring the matrix: Knowledge, perceptions and prospects of artificial intelligence and machine learning in Nigerian healthcare. Frontiers in Artificial Intelligence, 6, 1293297. https://doi.org/10.3389/frai.2023.1293297

Del Giorgio Solfa, F., & Simonato, F. R. (2023). Big Data Analytics in Healthcare: Exploring the Role of Machine Learning in Predicting Patient Outcomes and Improving Healthcare Delivery. International Journal of Computations, Information and Manufacturing (IJCIM), 3(1), 1–9. https://doi.org/10.54489/ijcim.v3i1.235

Islam, Md. M., Poly, T. N., Alsinglawi, B., Lin, L.-F., Chien, S.-C., Liu, J.-C., & Jian, W.-S. (2021). Application of Artificial Intelligence in COVID-19 Pandemic: Bibliometric Analysis. Healthcare, 9(4), 441. https://doi.org/10.3390/healthcare9040441

Rathore, F. A., & Rathore, M. A. (2023). The Emerging Role of Artificial Intelligence in Healthcare. Journal of the Pakistan Medical Association, 73(7), 1368–1369. https://doi.org/10.47391/JPMA.23-48


[1]  The potential for artificial intelligence in healthcare (Futurehealth) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616181/

The post The Potential of Artificial Intelligence in Healthcare: Transforming Patient Care and Administrative Efficiency appeared first on Your Say.

Pagine

  • Amazon
  • Canale WhatsAPP
  • In pubblicazione

Articoli recenti

  • Recensione al libro “La giustizia non è una dea bendata”, di Luca Bauccio
  • Il caso di Martina Oppelli e l’Associazione Luca Coscioni
  • Presentazione del libro “Lo schiaffatone” – Ocre, 29 giugno 2025
  • Silvio Berlusconi: per non dimenticare – 1980
  • Silvio Berlusconi: per non dimenticare – 1984
  • Silvio Berlusconi: per non dimenticare – 00b – Dichiarazioni di Veronica Lario
  • Silvio Berlusconi: per non dimenticare – 00a – Fiumi di parole
  • Silvio Berlusconi: per non dimenticare – 1985
  • Silvio Berlusconi: per non dimenticare – 1987
  • Silvio Berlusconi: per non dimenticare – 1986
  • Silvio Berlusconi: per non dimenticare – 1988
  • Silvio Berlusconi: per non dimenticare – 1989
Luglio 2025
L M M G V S D
 123456
78910111213
14151617181920
21222324252627
28293031  
« Giu    

Static Wikipedia March 2008

aa
ab
af
ak
als
am
an
ang
ar
arc
as
ast
av
ay
az
ba
bar
bat_smg
bcl
be
be_x_old
bg
bh
bi
bm
bn
bo
bpy
br
bs
bug
bxr
ca
cbk_zam
cdo
ce
ceb
ch
cho
chr
chy
co
cr
crh
cs
csb
cv
cy
da
en
eo
es
et
eu
fa
ff
fi
fiu_vro
fj
fo
fr
frp
fur
fy
ga
gd
gl
glk
gn
got
gu
gv
ha
hak
haw
he
hi
ho
hr
hsb
ht
hu
hy
hz
ia
id
ie
ig
ii
ik
ilo
io
is
it
iu
ja
jbo
jv
ka
kab
kg
ki
kj
kk
kl
km
kn
ko
kr
ks
ksh
ku
kv
kw
ky
la
lad
lb
lbe
lg
li
lij
lmo
ln
lo
lt
lv
map_bms
mg
mh
mi
mk
ml
mn
mo
mr
ms
mt
mus
my
mzn
na
nah
nap
nds
nds_nl
ne
new
ng
nl
nn
nov

Folders (provvisorio)

100games
1984
2008-03
April_2007
attivissimo2025
audiolibri
audiolibriliberliber
August_2007
australia
bibbia
biblioteca
bibliotecasolidaria
bugzilla
current
December_2006
divinacommedia
divinacommediamp3
ebooksen
ebookses
ebooksgratuits
ebooksit
en
es
ester
fol
fr
gag
gutenbergdvd
gutenbergproject
historiclinux
itwiki
librivox
linuxjournal
luna
malinverno
medline
nord
novella
pgp
piccoledonne
poty2006
poty2007
pt
stallman
standardebooks
tldp
ub24
ubuntu24
vitanuova
wikiart
wikipediafr

Tag

“silvio after amazon and berlusconi: cap. categoria come dei del delitto della dies, dimenticare” fatti film for from garlasco gesu, guarigione https://www.spreaker.com/show/5015449/episodes/feed marco, new non novità opinioni paperback: per podcast: processi quasi says secondo senza sono stata stefano tempi the ucciderlo valerio vangelo Wikipedia with

Lo schiaffatone – Edizione definitiva

Si dice Supercazzora, non supercazzola

Audiolibri di Valerio Di Stefano

A Silvia, Giacomo Leopardi.mp3
Alla luna, Giacomo Leopardi.mp3
Amor e’ uno desio che ven dal core, Iacopo da Lentini.mp3
Buenos Aires, Dino Campana.mp3
Cantico dei Cantici.mp3
Cantico delle Creature, San Francesco d’Assisi.mp3
Cavalleria rusticana, Giovanni Verga.mp3
Ciaula scopre la Luna, Luigi Pirandello.mp3
Costituzione della Repubblica Italiana, Parte 1.mp3
Costituzione della Repubblica Italiana, Parte 2.mp3
Costituzione della Repubblica Italiana, Parte 3.mp3
Cuore, Edmondo De Amicis, Parte 1.mp3
Cuore, Edmondo De Amicis, Parte 2.mp3
Cuore, Edmondo De Amicis, Parte 3.mp3
Cuore, Edmondo De Amicis, Parte 4.mp3
Cuore, Edmondo De Amicis, Parte 5.mp3
Cuore, Edmondo De Amicis, Parte 6.mp3
Cuore, Edmondo De Amicis, Parte 7.mp3
Cuore, Edmondo De Amicis, Parte 8.mp3
De Profundis clamavi, Valerio Di Stefano.mp3
Dei sepolcri, Ugo Foscolo.mp3
Deve la donna bella esser sagace, Margherita Costa Monaca.mp3
Dianora, Luisa Giaconi.mp3
Dichiarazione universale dei Diritti dell’Uomo.mp3
Dissacrazione del libro Cuore di Edmondo De Amicis, Conferenza, Valerio Di Stefano.mp3
Domani, Vittoria Aganoor Pompilij.mp3
Donne mie, poi ch’ho provato Margherita Costa Monaca.mp3
Donne mie, poi ch’ho provato, Margherita Costa Monaca.mp3
Dubbi amorosi, Pietro Aretino.mp3
D’un altro monte ove si scorge il mare, Isabella di Morra.mp3
Ecco che un’altra volta o valle inferna, Isabella di Morra.mp3
Eros, Giovanni Verga, Parte 1.mp3
Eros, Giovanni Verga, Parte 2.mp3
Eros, Giovanni Verga, Parte 3.mp3
Eros, Giovanni Verga, Parte 4.mp3
Eros, Giovanni Verga, Parte 5.mp3
Eugenie Grandet, Honore de Balzac, Parte 1.mp3
Eugenie Grandet, Honore de Balzac, Parte 2.mp3
Eugenie Grandet, Honore de Balzac, Parte 3.mp3
Eugenie Grandet, Honore de Balzac, Parte 4.mp3
Eugenie Grandet, Honore de Balzac, Parte 5.mp3
Eugenie Grandet, Honore de Balzac, Parte 6.mp3
Finalmente, Vittoria Aganoor Pomilij.mp3
Frammento di Ulisse, Dante Alighieri.mp3
Gioiosamente canto, Guido delle Colonne.mp3
Grato e felice ai tuoi pietosi mali, Michelangelo Buonarroti.mp3
Guido, i’ vorrei che tu e Lapo ed io -Dante Alighieri.mp3
Habacuc.mp3
I fieri assalti di crudel fortuna, Isabella di Morra.mp3
Il cinque maggio, Alessandro Manzoni.mp3
Il crollo, Luigi Pirandello.mp3
Il Giornalino di Gianburrasca, Vamba, Parte 1.mp3
Il Giornalino di Gianburrasca, Vamba, Parte 2.mp3
Il Giornalino di Gianburrasca, Vamba, Parte 3.mp3
Il Giornalino di Gianburrasca, Vamba, Parte 4.mp3
Il Giornalino di Gianburrasca, Vamba, Parte 6.mp3
Il Giornalino di Gianburrasca, Vamba, Parte 7.mp3
Il Giornalino di Gianburrasca, Vamba, Parte 8.mp3
Il Giornalino di Gianburrasca, Vamba, Parte 9.mp3
Il Progetto GNU, Richard Stallman.mp3
Il sabato del villaggio, Giacomo Leopardi.mp3
Il vento, Luisa Giaconi.mp3
In capannello, Giovanni Pascoli.mp3
index.html
Io m’agio porto in cor a Dio servire, Iacopo da Lentini.mp3
La bbona famijia, Giuseppe Gioachino Belli.mp3
La bella bimba dai capelli neri, Vittoria Aganoor Pompilij.mp3
La cucina in Dona Flor e i suoi due mariti di Jorge Amado, Conferenza, Valerio Di Stefano.mp3
La cucina ne Il Gattopardo di Giuseppe Tomasi di Lampedusa, Conferenza, Valerio Di Stefano.mp3
La giara, Luigi Pirandello.mp3
La madre, Italo Svevo.mp3
La mia anima sara triste per sempre, Federigo Tozzi.mp3
La morte di Enrico, Federigo Tozzi.mp3
La pioggia nel pineto, Gabriele D’Annunzio.mp3
La sabbia del tempo, Gabriele D’Annunzio.mp3
La scuola a pezzi, Valerio Di Stefano, Parte 1.mp3
La scuola a pezzi, Valerio Di Stefano, Parte 2.mp3
La sera del di’ di festa, Giacomo Leopardi.mp3
La tessitrice, Giovanni Pascoli.mp3
L’alba, Luisa Giaconi.mp3
Li soprani der monno vecchio, Giuseppe Gioachino Belli.mp3
Lo meo servente core, Dante Alighieri.mp3
Lo schiaffatone, Valerio Di Stefano, Parte 1.mp3
Lo schiaffatone, Valerio Di Stefano, Parte 2.mp3
Marzo 1821, Alessandro Manzoni.mp3
Meravigliosamente, Iacopo da Lentini.mp3
Metello di Vasco Pratolini, Conferenza, Valerio Di Stefano.mp3
Non tardo a fare un sirventese, Bertran de Born.mp3
Novanta sonetti d’amore, Gaspara Stampa.mp3
Novella d’amore, Matilde Serao.mp3
Novembre, Giovanni Pascoli.mp3
Nunc et in hora mortis nostrae, Valerio Di Stefano.mp3
O falce di Luna calante, Gabriele D’Annunzio.mp3
O voi che per la via d’amor passate, Dante Alighieri.mp3
Odio gli indifferenti, Antonio Gramsci.mp3
Per la liberta della scuola, Antonio Gramsci.mp3
Per una ghirlandetta, Dante Alighieri.mp3
Piangete Amanti poi che piange Amore, Dante Alighieri.mp3
Pianto antico, Giosue Carducci.mp3
Pinocchio, Carlo Collodi, Parte 1.mp3
Pinocchio, Carlo Collodi, Parte 2.mp3
Pinocchio, Carlo Collodi, Parte 3.mp3
Pinocchio, Carlo Collodi, Parte 4.mp3
Pinocchio, Carlo Collodi, Parte 5.mp3
Poiche’ narro’ la mal sofferta offesa, Faustina Maratti Zappi.mp3
Postuma, Lorenzo Stecchetti, Parte 1.mp3
Postuma, Lorenzo Stecchetti, Parte 2.mp3
Quando nell’ocean l’altera fronte, Laura Battiferri.mp3
Quel che ho da dire e’ che sono innocente, Bartolomeo Vanzetti.mp3
Salmi 1-50.mp3
San Manuel Bueno Martire, Miguel de Unamuno, Parte 1.mp3
San Manuel Bueno Martire, Miguel de Unamuno, Parte 2.mp3
San Martino, Giosue Carducci.mp3
Se ben pietosa madre unico figlio, Tullia d’Aragona.mp3
Senz’ombra d’amore, Luisa Giaconi.mp3
Settembre, Gabriele D’Annunzio.mp3
S’i fossi foco – Cecco Angiolieri.mp3
Sognai confuso e il sonno fu disperso, Fernando Pessoa.mp3
Son pur finiti, ingrato, i miei tormenti, Margherita Costa Monaca.mp3
Sonata in bianco minore, Sergio Corazzini.mp3
Sonetti, Ugo Foscolo.mp3
Sonno ch’al dolor mio puoi sol dar pace, Laura Battiferri.mp3
Sorelle Materassi di Aldo Palazzeschi, Conferenza, Valerio Di Stefano.mp3
Sparrissi il cor, ghiacciossi il sangue quando, Chiara Matraini.mp3
Spenta e’ d’amor la face il dardo e’ rotto, Barbara Torelli.mp3
Storia di una capinera, Giovanni Verga, Parte 1.mp3
Storia di una capinera, Giovanni Verga, Parte 2.mp3
Storia di una capinera, Giovanni Verga, Parte 4.mp3
Storia di una capinera, Giovanni Verga, Parte 5.mp3
Su la poppa, Giovanni Boccaccio.mp3
Tanto gentile e tanto onesta pare, Dante Alighieri.mp3
Torbido Siri del mio mal superbo, Isabella di Morra.mp3
Ultimo canto, Giovanni Pascoli.mp3
Un di si venne a me malinconia, Dante Alighieri.mp3
Un sirventese senza sbagli, Bertran de Born.mp3
Vangelo secondo Luca, Parte 1.mp3
Vangelo secondo Luca, Parte 2.mp3
Vangelo secondo Marco, Parte 1.mp3
Vangelo Secondo Marco, Parte 2.mp3
Vangelo secondo Matteo, Parte 1.mp3
Vangelo secondo Matteo, Parte 2.mp3
Vangelo secondo Matteo, Parte 3.mp3
Vede perfettamente onne salute, Dante Alighieri.mp3
Vita nuova, Dante Alighieri, Parte 1.mp3
Vita Nuova, Dante Alighieri, Parte 2.mp3
Voi ch’ascoltate in rime sparse il suono, Francesco Petrarca.mp3

Download per opere singole

A
B
C
D
F
G
I
L
M
P
Q
R
S
T
U
V
© 2025 Valerio Di Stefano | Powered by Minimalist Blog WordPress Theme

Non che ne vada particolarmente orgoglioso, ma non posso continuare a rompere le scatole alla gente coi miei libri che escono in continuazione. Per questo, e solo per chi lo vuole ho creato un canale WhatsApp apposito.
Nessun obbligo, naturalmente e molta, molta prudenza.

https://whatsapp.com/channel/0029VbAskLxGufJ0D2td2P3b

×